Numerous peer-reviewed studies have found that cell phone use is not associated with an increased risk of brain tumors. An Oct. 20, 2011 study of 358,403 Danish citizens – the largest study of its kind to date – concluded that "there was no association between tumors of the central nervous system or brain and long term (10 years +) use of mobile phones." [39] A July 27, 2011 study found that there was no association between cell phone use and brain tumor risks among children and adolescents. [50] Numerous other studies published from 2001-2013 have similarly concluded that there is no association between cell phone use and the development of brain tumors. [1] [41] [42] [45] [46] [49]
... our review shows that there is a substantial amount of studies which indicate that plants have experienced physiological or morphological changes due to radiofrequency radiation and show statistically significant changes for the short-term exposure duration (up to 13 weeks). In contrast, the results obtained from the long-term exposure studies (two publications using nine different exposures with exposure duration between 3 months to 6 years) support no physiological effects on plants when exposed to radiofrequency radiation from mobile phone radiation. This would bring a remarkable point to the discussion about the apparent absence of response to the long-term exposure that may be interpreted as adaptations. On the other hand, phenotypic plasticity of plants will permit them to change their structure and function; hence, plants to adapt to environmental change (Nicotra et al., 2010). Plants are naturally affected by environmental stresses due to their immobility. Plants could respond to the environmental factors of wind, rain, electric field and ultraviolet radiation and adjust its physiological condition to adapt to the change of environment (Braam and Davis, 1990; Braam et al., 1996; Mary and Braam, 1997) .... our previous findings (Halgamuge et al., 2015) indicate that the biological effects considerably relied on field strength and amplitude modulation of the applied field.

This Nation investigation reveals that the wireless industry not only made the same moral choices that the tobacco and fossil-fuel industries did; it also borrowed from the same public-relations playbook those industries pioneered. The playbook’s key insight is that an industry doesn’t have to win the scientific argument about safety; it only has to keep the argument going. That amounts to a win for the industry, because the apparent lack of certainty helps to reassure customers, even as it fends off government regulations and lawsuits that might pinch profits.20
The aim of this study was to investigate the effects of electromagnetic radiation (EMR) on the pancreas tissue of young rats and the ameliorative effect of Gallic acid (GA). Six-week-old, 48 male rats were equally divided into four groups: Sham group, EMR group (2.45 GHz), EMR (2.45 GHz)+GA group (30 mg/kg/daily) orally and GA group (30 mg/kg/daily). After 30 days, serum and pancreatic tissue samples were harvested for biochemical, histopathological and immunohistochemical analysis. Serum amylase, lipase, glucose, and tissue malondialdehyde, total oxidant status and oxidative stress index were increased, whereas total antioxidant status decreased in the EMR group. The histopathological examination of the pancreases indicated slight degenerative changes in some pancreatic endocrine and exocrine cells and slight inflammatory cell infiltrations in the EMR group. At the immunohistochemical examination, marked increase was observed in calcitonin gene related protein and Prostaglandin E2 expressions in pancreatic cells in this group. There were no changes in interleukin-6 expirations. GA ameliorated biochemical and pathological findings in the EMR+GA group. These findings clearly demonstrate that EMR can cause degenerative changes in both endocrine and exocrine pancreas cells in rats during the developmental period and GA has an ameliorative effect.
Listeria monocytogenes response to each antibiotic was different, for DOX (doxycycline), and the window response occurred after 6 hours of exposure to Wi-Fi and RF simulator radiation. However, for other antibiotics, these changes were only observed at the ninth hour of exposure to Wi-Fi while this response could not be observed for RF simulator radiation. After 9 hours of exposure to Wi-Fi for CIPR and SXT antibiotics, bacteria had a tendency to become more resistant. This was in contrast to the pattern observed for LEVO, CTX, and CTR antibiotics, which an increased sensitivity was observed.
We’re living in a wireless technology age, but there’s some evidence that exposure to electromagnetic radiation from cell phones and wireless devices could increase your risk of certain cancers and tumors. However, more research is needed. In the meantime, I recommend practicing the precautionary principle. Some great cell phone safety tips include:
Joel Moskowitz (@berkeleyprc) of the University of California, Berkeley School of Public Health, US, says: “This is the largest technological experiment in the history of our species, with potential health risks we still know next to nothing about.” This view is shared by Denis Henshaw, professor of human radiation effects at Bristol University, UK, who said: “Vast numbers of people are using cell phones and this could be a time bomb of health problems.”