According to scientists involved in the process, the WHO may decide later this year to reconsider its categorization of the cancer risk posed by cell phones; the WHO itself told The Nation that before making any such decision, it will review the final report of the National Toxicology Program, a US government initiative. The results reported by the NTP in 2016 seem to strengthen the case for increasing the assessment of cell-phone radiation to a “probable” or even a “known” carcinogen. Whereas the WHO’s Interphone study compared the cell-phone usage of people who had contracted cancer with that of people who hadn’t, the NTP study exposed rats and mice to cell-phone radiation and observed whether the animals got sick.47

Wi-Fi transmissions consist of sequences of RF burst signals or pulses ranging in duration depending on the amount of data being carried by a pulse(15). The proportion of time that Wi-Fi transmits RF signals is called the duty cycle. Joseph et al.(14) in measuring Wi-Fi in 176 different urban locations (outdoors, homes, offices) found a median duty cycle of 1.4% over all the measurements. Particularly in schools, Khalid et al.(10) in measuring Wi-Fi in six schools found a mean duty cycle from the access points of 4.8%. In our study duty cycle was measured separately for the 2.45 and 5 GHz transmissions when performing the stationary Wi-Fi measurements in the centre of the classroom. The median duty cycle for 23 schools that were measured in the current study was 6.3 and 2.4% for 2.45 and 5 GHz transmissions, respectively.

PURPOSE: MicroRNAs (miRNA) play a paramount role in growth, differentiation, proliferation and cell death by suppressing one or more target genes. However, their interaction with radiofrequencies is still unknown. The aim of this study was to investigate the long-term effects of radiofrequency radiation emitted from a Wireless Fidelity (Wi-Fi) system on some of the miRNA in brain tissue.
The scientific evidence that cell phones and wireless technologies in general can cause cancer and genetic damage is not definitive, but it is abundant and has been increasing over time. Contrary to the impression that most news coverage has given the public, 90 percent of the 200 existing studies included in the National Institutes of Health’s PubMed database on the oxidative effects of wireless radiation—its tendency to cause cells to shed electrons, which can lead to cancer and other diseases—have found a significant impact, according to a survey of the scientific literature conducted by Henry Lai. Seventy-two percent of neurological studies and 64 percent of DNA studies have also found effects.52
This review presents the findings of more than 100 studies that were published in reputable scientific journals. Most of these studies confirm potential health impacts as were summarized in the joint "Nicosia Declaration on Electromagnetic and Radiofrequency Radiation" by the Cyprus and Austrian medical associations in 2017: “Potential health impacts of non-ionizing radiation from EMF/RF (electromagnetic fields/radiofrequencies) of 30 KHz – 300 GHz include carcinogenicity (Class B, IARC 2011), developmental neurotoxicity, effects on DNA, fertility, hypersensitivity and other serious effects are well documented in peer reviewed studies. RFR can increase oxidative stress in cells and lead to increase of pro-inflammatory cytokines and lower capacity to repair DNA single- and double-strand breaks. Cognitive impairments in learning and memory have also been shown. These effects can occur at levels well below existing limits of ICNIRP. ... Exposure to EMF/RF at an early developmental stage is of particular concern due, amongst other, to greater absorption and potential effects on the developing developing brain, nervous system as well as their reproductive system, may induce cancer, cognitive effects, etc.” ( and
We asked Dr. George Carlo his thoughts on EMF cases and shielding products, “most offer some protection, some of the time, to some people, because they can alter the immediate electromagnetic field environment around the person,” and immediately emphasizes the importance of “some,” which seems to tell us that it’s vastly unpredictable. “All waveforms in the environment are highly variable and they interact with other factors in the environment that make them even more variable.” This pretty much sums up that the artificial electromagnetic energy universe is vastly unpredictable.
This study investigated the effect of 2GHz EMR (1h) on the growth dynamics of Myriophyllum aquaticum (Parrot feather) by measuring the nanometric elongation rate fluctuation (NERF) using a statistical interferometry technique. After continuous exposure to EMR, M. aquaticum plants exhibited a statistically significant reduction in NERF standard deviation, therefore, the reduced NERF was due to a non-thermal effect caused by EMR exposure. The alteration in NERF continued for at least 2.5 h after EMR exposure and no significant recovery was found in post-EMR NERF during the experimental period.
Result: More than 100 studies on 2.45 GHz radiation were analyzed, most of which found changes compared to the control groups at levels below the safety guidelines of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) (issued as exposure limits of the 26th Federal Pollution Control Ordinance (BImSchV) in Germany). The available studies document damage to the reproductive system, impacts on the EEG and brain functions, as well as effects on the heart, liver, thyroid, gene expression, cell cycle, cell membranes, bacteria, and plants. As a mechanism of action, many studies identify oxidative stress. Adverse effects on learning, memory, attention, and behavior are the result of cytotoxic effects.
The present study tested the effects of Wi-Fi (2.45 GHz for 1h) exposure on Ca(2+) influx, oxidative stress and apoptosis through TRPV1 channel in the murine dorsal root ganglion (DRG) and hippocampus of pentylentetrazol (PTZ)-induced epileptic rats. The cytosolic free Ca(2+), reactive oxygen species production, apoptosis, mitochondrial membrane depolarization, caspase-3 and -9 values in hippocampus were higher in the PTZ group than in the control although cell viability values decreased. The Wi-Fi exposure induced additional effects on the cytosolic Ca(2+) increase. However, pretreatment of the neurons with CPZ, results in a protection against epilepsy-induced Ca(2+) influx, apoptosis and oxidative damages. In conclusion, epilepsy and Wi-Fi in our experimental model is involved in Ca(2+) influx and oxidative stress-induced hippocampal and DRG death through activation of TRPV1 channels, and negative modulation of this channel activity by CPZ pretreatment may account for the neuroprotective activity against oxidative stress.

On the basis of current scientific information, ARPANSA sees no reason why wi-fi should not continue to be used in schools and in other places. However, ARPANSA recognises that exposure to RF EME from wi-fi and other wireless devices can be of concern to some parents. ARPANSA will continue to review the research into potential health effects of RF EME emissions from wi-fi and other devices in order to provide accurate and up‑to‑date advice.
Cancer is the obvious start. An early concern with mobile technology was clusters of the disease around those living near phone masts. One study in Israel found a 4.5-fold increase in cancers of all kinds in the immediate vicinity of a mast (Int. J. Cancer Prev., 2004). In 2009, a Korean team of researchers carried out a pool analysis of the results of 23 studies, which involved almost 38,000 subjects.